

Part - A

- 01. A. i. a. Parentage testing / criminal investigations / To solve immigration disputes.
 - b. DNA fingerprinting
 - ii. a. Always a purine base pairs with a specific pyrimidine base
 - b. In DNA Adenine pairs with Thyamin RNA Adenine pairs with Uracil.
 - iii. Sub cellular component Ribosome

Function = Carryout protein synthesis (polypeptide)

- iv. binding of Small subunit of ribosome to mRNA
 - and to the initiator tRNA.
 - tRNA carries methionine as the 1st amino acid
 - Then 2 sub units of the ribosome combine to form the functional ribosome.
- v. a. Golgi apparatus
 - b. Cytoskeleton
 - c. Microtubules and protems

dynamic / has the ability to break and reform as needed.

- B. i. DNA & protein complex which organized inside the nucleus
 - ii. Get condense → Prophase

Less condense → Telophase

- iii. a. The abnormal cells remain at the original site the lump
 - b. When a single cell in a tissue undergoes transformation / by that converts a normal cell.
- iv. a. It can carry energy to anywhere in the cell for can any energy consuming reaction.
 - b. In bioluminescence.

In muscle contraction

- v. a. A graph showing the effectiveness of different wave lengths of photosynthesis
 - b, Chlorophyll a is more effective for blue and red light.

Chlorophyll b and caraotenoids are effective in absorption of specific range wavelength. of corresponding to different colours

- C. i. a. RuBP oxygenase reaction
 - b. 3-PGA production reduce by 50% instead of RuBP carboxylase reaction.
 - ii. Correct orientation of the molecules.
 - The tight fit brings the substrate molecules and the active site close to each other. (forming the enzyme complex)
 - iii. a. Protein → Amino acid

Amino acid NH3 Pyruvate / Acety COA / citric acid cycle

- b. Photosynthetic rate \rightarrow Audus micro burrette
 - Respiratory rate → Respirometer stages of meiosis → *Tradiscantra*
- iv. a. Organisms aquire characteristics during their life time as adaptations to their environment and
 - Pass those characteristics to the next generation.
 - b. The taxonomic unit at any level / rank of the hierarchy
- v. a. use of morphological criteria to distinguish species such as shape and other structural features.
 - b. Methanococcus Production of bio gas.
- 02. A. i. a. Generic name & specific epithet.
 - b. Multicellular gametangia
 - Dependent embryo
 - Apical meristem

ii.

Gelidium

- 1. Photosynthetic pigments: chlorophyll a, d and phycobili proteins
- 2. Stored food: Floridean starch
- 3. Gas-filled bulb shape floats: absent
- 4. Cell wall: cellulose
- iii Lycophyta

Sargassum

- 1. Photosynthetic pigments: chlorophyll a, c and xanthophyll
- 2. Stored food: Laminarin
- 3. Gas-filled bulb shape floats: present
- 4. Cell wall: cellulose and alginic acid
- iv. a. Because they are transported directly through the pollen tube.
 - b. All angiospermae plants
 - Most of gymnospermae plants.
- v. Produce flowers
 - Triploid endosperm
 - Double fertilization
 - Seeds are enclosed in fruit
 - Production of fruit
 - Presence of sieve tube elements & companion cells.
- B. i. a. root cap
 - b. Auxin
 - c. High concentration inhibits the cell elongation of the root.
 - Promote cell division in the root.
 - Branch which arises horizontally aise

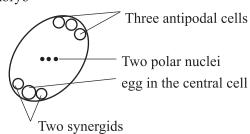
- ii. allows passing of nutrients more freely.
 - allows movement of fluid from one sieve element to the next.
- iii. a. Vascular cambium

Cork cambium

- b. Cork cambium and tissues it produces are collectively called Periderm.
- iv. Monocots \rightarrow Parallel

Dicots → Reticulate

- v. The physical property that predicts the direction in which water will flow, governed by solute concentration and applied pressure.
- C. i. a. Guttation.
 - b. Alocasia, Colocasia


ii.	Element	Forms of intake	Function
	P	$H_2PO_4^-$, HPO_4^{2-}	Component of ATP & nucleic acid & phospholipids
	N	NO ₃ ⁻ , NH ₄ ⁺	Component of amino acids, proteins, nucleotides,
			nucleic acid, chlorophyll, coenzyme & enzymes

- iii. Nephrolepis, Cycas
- iv. a. Due to shuffling of genes within a species,
 - it produces new genetic combinations.
 - Resulting increased genetic variation within the species.
 - Important for survival and leads to evolution.
 - b. Absorption of water

Activation of enzymes

Mobilization of food resources (nutrients)

Rapid growth process of embryo

- 03. A. i. a. They can be synthesized within the body from organic precursor molecules.
 - b. Any except Leucine and Methionine.
 - ii. Fructose: Facilitated diffusion
 - Amino acid: Actively transported
 - Water: Osmosis
 - iii. a. organic compounds required in small amounts for maintenance of normal health and metabolism?
 - b. Vitamin: Vitamin K mineral F (Fluorina)
 - iv) a. Dissolved ions in the plasma in the blood
 - Albumin in the plasma
 - b. Heparin

Complement protein

B. i, a, Complement proteins

- a. Complement proteins B. i.
 - b. Small accessible portion of an antigen that binds to a specific antigen receptor of T cells or B-lymphocytes is called an epitope. There are several antigen epitopes in a single antigen, each can bind with a specific antigen receptor of T lymphocytes.
 - ii. a. Exaggerated responses of the body to certain antigens (allergens) are called Allergies
 - b. Pollens

Dust

Some food (e.g., cuttlefish, prawn)

Some antibiotics (Penicillin)

Venom from honey bees and wasps

- Because such substances may not be entirely filtered due to the short time & they remain in the iii. a. glomerulus.
 - b. Actively secreted H⁺ Passively secreted - NH₃
- Motor system iv. a.

Autonomic nervous system

- b. Due to progressive and irreversible degeneration of neurons in the brain cerebral cortex functioning, especially with deteriorating mental functioning.
- a. PTH Parathyroid hormone

Calcitonin

- b. Trophoblast
- C. i. a. Alleles separate and pair up independently during the formation of gametes.
 - To genes located on different chromosomes (non-homologous chromosomes)
 - To genes located far apart on the same chromosomes

ii.

- iii. A ---- Ef
- B --- FF / Ff C --- FF / Ff
- D --- Ff
- 04. A. i. A collection of communities as well as the abiotic factors which they interact
 - ii. a. Large grazers such as horses. burrowing mammals.
 - b. Inland fresh water wetlands
 - · Coastal wetlands
 - Man-made wetlands

- iii. a. Genes, Species and eco-systems of direct indirect or potential use to humanity
 - b. Carbondioxide fixation through photosynthesis Maintaining of essential nutrients cycles.

Maintaining the water cycle and recharging groundwater

Soil formation and protection from erosion

Regulating climate by recycling moisture into the atmosphere

Water purification

Pollination

- iv. Kothalahimbuty, Ebony (Kaluwara)
- v. a. Increase in the average temperature of the Earth's surface due to the enhanced greenhouse effect.
 - b. Co₂
- B. i. Simple nutritional requirements are sufficient for their growth.
 - They are able to convert (metabolize) a wide range of raw materials.
 - They are able to convert cheap raw materials into industrially important products.
 - Due to higher growth rate, they can convert raw materials into products within a short period of time.
 - Their growth conditions can be controlled to obtain desired end products.
 - Processes can be carried out at low temperatures and pressures compared to conventional industrial methods.
 - They give higher yield with higher specificity when compared to conventional industrial methods.
 - Microbes are amenable to genetic manipulation to obtain desired yield and quality with high efficiency.
 - ii. Remediate soil and water contaminated with oil spills, toxic metal waste, hazardous organic waste etc. decompose waster water from food processing and chemical plants,
 - iii. a. Pseudomonas / Bacillus / Agrobacterium
 - b. Fungi filaments
 - Actinomycetes filaments
 - Bacteria (which produce polysaccharide gums)
 - iv. a. Coliforms
 - b. Aerobic or facultative anaerobic
 - Gram-negative
 - Non-endospore forming
 - Rod-shaped
 - Ferment lactose to form gas within 48 hours in lactose broth medium
 - v. Botulism Clostridium botulinum

Cholera - Vibrio cholera

Aflatoxin - Aspergillus flavus

C. i.

- ii. a. Growing crops under controlled environmental conditions.
 - b. Bell pepper, Tomato, Salad cucumber, Lettuce, Cauliflower
- iii. Provide physical support for the explant
 - Increase the aeration of the medium
- iv. a. Wuchereria, bancrofti
 - b. Integrated vector management including:
 - Environmental control methods
 - Chemical control methods
 - Biological control methods
- v. a. nano-formulated liposomes
 - b. Improved diagnosis of various diseases
 - Identifications of mutations linked to different forms of cancer
 - gene therapy and control system for drugs
 - study human evolution
 - anthropology

Part B - Essay

05) a. There are 4 Levels of structures

- 1. Primary Structure
- 2. Secondery Structure
- 3. Tertiary Structure
- 4. Quaternary Structure
- 5. The unique sequence of linearly arranged amino acid
- 6. Linked by petide bonds is the primary Structure
- 7. Primary Structure of a single polypeptide chain coil and folds
- 8. As a result of intra moleculer hydrogen bonds.
- 9. between the oxygen atoms of the charboxyl groups
- 10. and hydrogen atoms of the amino groups
- 11. of the same polypeptide chain backbone, to form the Secondery Structure
- 12. Alpha helix
- 13. eg:- Keratin
- 14. β pleated sheet eg:- spider's silk fiber
- 15. Usually the Secondery polypeptide chain bonds and folds extensively forming
- 16. a presice compact unique, functional and three diomensional shape resulting
- 17. Interactions between the side chain / R group of amino acid
- 18. H bonds
- 19. Disulphide bonds
- 20. Ionic bonds
- 21. Hydrobhobic interactions
- 22. Vander Waals interactions
- 23. eg:- most of the enzymes/ myoglobin / albumin
- 24. Aggeration of two or more polypeptide
- 25. Separate chains are called protein subunits which were held together by inter and
- 26. intra molecular interactions
- 27. eg :- Heamoglobin,collagen

b. Protein digestion occured in small intestine

- 1.Trypsin
- 2. Chymotrypsin
- 3. Catalyse the conversion of small polypeptides
- 4. into small polypeptides
- 5. These smaller polypeptides are converted into small polypeptides
- 6. Amino acid
- 7. By the Cotalytic action of pancreatic Carboxypeptidses.
- 8. Dipeptidase
- 9. Carboxypeptidase If there is 'Protease'
- 10. Aminopeptidase J give 1 point

11. Catalyse the conversion of small peptides into amino acids

27 + 11 = 38 $38 \times 4 = 152$ Max. 150

06) a. Mechanism of pholem translocation

- 1. Translocation of sugar is to transport or load into sieve tube elements
- 2. In some species it moves from mesophyll cells to sieve tube elements
- 3. Via symplast
- 4. Passing through plasmodesmata
- 5. Sinks usually receive sugar from nearest sugar sources
- 6. By active transport
- 7. because sucrose is more concentrated in seive tube elements and companion cells then mesophyll cells.

- 8. Means against the concentration gradient
- 9. Due to loading of suger into seive tube reduces water potential inside the seive tube elements at the source
- 10. This causes the seive tube to take up water
- 11. from the xylem
- 12. by osmosis
- 13. This uptake of water generates a positive pressure
- 14. that forces the sap to fow along the tube
- 15. Unloading of sugar is at the sink end of the service tube.
- 16. The concentration of free sugar in the sonk is always lower
- 17. Than in the seive tube
- 18. As a result of Concentration gradient
- 19. Sugar molecules diffuse from pholem to sink
- 20. And water follows by osmosis
- 21. Pholem sap moves from source to sink by bulk flow
- 22. driven by positive pressure known as pressure flow
- b. 1. Water is brought to the leaf in the xylem of vascular bundle
 - 2. subsequently spread
 - 3. from a fine branch network throughout the leaf
 - 4. These branches end in one or few xylem vessels or tracheides
 - 5. Possessing little lignification
 - 6. Therefore water can release easily to mesophyllas
 - 7. through their cellulose walls to
 - 8. water moves by apoplast, symplast and transmembarane pathway
 - 9. through the mesophyll cells
 - 10. according to water potential gradient
 - 11. Then water evaporate from the wet walls of the mesophyll cells
 - 12. into the intercellular air space
 - 13. Particulary into substomatal air space
 - 14. From here (stomata) water vapour
 - 15. Immedietly next to the leaf is the thin layer of stationary air
 - 16. Each stomata has a diffusion gradient
 - 17. diffusion shell around it
 - 18. diffuse out and swap away by moving air

22 + 18 = 40

any 38 point

Max. 150

07 a. Structure of the cereberum

Cerebrum is the largest part of the human brain

It is divided by a deep cleft

into right and left cerebral hemispheres

The superficial part of the cerebrum

composed of nerve cell bodies / gray matter

forming the cerebral cortex

Deeper layers contist of nerve fibers / white matters

The two cerebeal hemispheres are connected by corpus callosum

Which is a mass of white matters.

The cerebeal cortex shows many folding

The cortex of each cerebeal hemisphere is divided into 4 lobes

Frontal lobe

Temporal lobe

Parirtal lobe

Occipital lobe

Three main functunal areas of the cerebeal cortex

Sensory area

Assosiation area

Motor area

b. Mechanism of transmission of nerve impulses through chemical synapses

An action potential at an axon terminal

- 2. depolarizes the plasma membrane of presynaptic cell
- 3. Depolrization at the presynaptic terminal causes Ca 2+ to diffuse in to the terminal
- 4. The rise in Ca 2
- 5. Causes binding of synaptic vasicles containing neurotransmitters to the presynaptic membrane
- 6. This result in the release of the neurotransmitters into synaptic cleft
- 7. Neurotransmitters diffuse across snaptic cleft
- 8. Neurotransmitters bind and activates
- 9. Specific receptors in thr postsynnaptic cell membrane
- 10. eg :- Acetylcholine
- 11. the binding of neurotransmitters to the post sypnatic membrane allows Na+ and K+ to diffuse across the post synaptic membrane
- 12. depolarization takes place in the post synaptic membrane
- 13. it reaches the action potential
- 14. After passing the nerve impulse to the postsynaptic cell
- 15. the signal is terminated either by
- 16. Enzymatic hydrolysis of neurotransmitters
- 17. Recapture of neurotransmitters into the presynaptic terminls.

19 + 17 = 36 $36 \times 4 = 144$

diagram 06

Total 150

08. a.

The female gonsads are the 2 ovaries and they are found on either side of the uterus and are held in place in the adbominal cavity by ligaments

The overies have 2 tissue layers

Outet the cortex

and inner the medulla

The outer layer of each ovary consist of connective issue

Covered by germinal epithelium

The outer layer contains ovarion follicles in various stages of maturity

Each follicle consists of an oocyte

Which is a Particully devoloped egg

Surrounded by support cells

Support cells protect the oocyte

Human ovum is a round ball after the

Reptured follicle

Corpus lutenum

Fibrous corpus atbicans are present

There are blood vessels present in the medulla

a. Process of drinking water treatment

There are 3 main steps in ab urban water treatment plant

- Sedimentation and coagluation
- Filteration
- Disinfection
- If water is turbid, water is allowed to stand in a holding tanks 5.
- 6. for period of time
- to allow settling down of particles suspended in water 7.
- Large particulate matter settles in the bottom
- Sendimentation is enhanced by adding alum Culminium potassium sulphate 9.
- 10. Which produces a sticky precipitate
- 11. Many micro organisms as well as
- 12. Finly suspended matter are removed by filteration

- 13. Removes protozoan cysts and
- 14. other micro organisms
- 15. By passing through beds of find sands
- 16. This removes 99% of Backteria
- 17. Some urban treatment plants additionaly use Activated carbon
- 18. for the removel of toxic chemicles in didinfection
- 19. Chlorination is one of the most common method
- 20. It kill pathogenic bacteria
- 21. By O3 kill microorganisms by oxidation

17 + 21 = 38

 $38 \times 4 = 152$

Max. 150

09. a.

- One nucleotide pair is replaced by another pair. 1.
- 2. There is no change in the lenght of the gene
- Because the same amino acid may be coded by more than one coded 3.
- 4. Some substitutions are silent mutations
- Substitution of one pair of gene may be not have an effect on polypeptide it code for 5.
- The third letter in the codon triplet 6.
- has a wobble / 3rd letter of codon is replaced by another letter / the same amino acid is coded 7. in the 3rd letter
- A Substitution msy also change one amino acid in the polipeptide 8.
- 9. Therefore the meaning of the primary structure of the polypeptide is changed slightly
- these mutations are missense mutations 10.
- This Substitution of the amino acid with another amino acid may 11.
- 12. Or may nothave significant impact on
- 13. the tertiary structure
- 14. Or quartnery structure of the proteins

Or even with new properties

This may render the protein a higher activity 15.

22 + 14 = 36

 $36 \times 4 = 144$

- Very often, these changes are either neutral or detrimental 17.

sarcomere diagrame 06

18. Making the protein useless or less efficient Total 150

19. It is also possible that a point mutation convert a codon coding for an amino acid to a stop codon

b. Structure of the sarcomere

16.

- Sarcomeres are the repeating contractile units present within a striated muscle cell
- The sarcomere is composed of myofibrills
- Containing contractile thick filament and thin filaments
- Which are made up of specific proteins 4.
- 5. Thin filaments formed mainly from actin protein
- Attached at the Z line a dense strip which forms boarders of the Sarcomere.
- The thick filaments formed from myosin protein
- 8. Are fixed at the M line
- 9. in the middle region of the sarcomere.
- 10. Sarcomere are found repeatedly between two Z lines in a skeletle muscle cell
- 11. At the edge of the sarcomere, there are only thin filaments
- 12. At the center of the center of the thick filaments are present
- 13. Such arrangement of thick and thin filaments in the sarcomeres.
- 14. Permits the shortening of the skeletal muscle cell

10 a. Hot - air sterilization

Micro - organizmes are killed by oxidation

- 2. Items to be sterlized are heated to about 1700 C
- 3. and maintain for 2 hours

- 4. in a dry air oven
- 5. Sterilize glassware
- 6. Such a petri plates, flasks beakers
- 7. bottles and pipettes

b. Inbreeding

The breeding among genetrically similar individuals are known as inbreeding

- 2. Among plant breeders the term inbreeding is commonly used to mean self fertilization
- 3. This is done to produce an inbred variety
- 4. Which is exactly the same generation after generation
- 5. Wheat, Oats, Barley and bacco are produced from seeds which are hebitually self fertilized
- 6. In animal breeding the term inbreeding is used to refer to the mating of closely related individuals
- 7. Inbreeding brings uniformity of required type
- 8. While preserving the desired characters
- 9. Inbreeding is used for devoloping pure lines in agriculture
- 10. Inbreeding increases homozygosis
- 11. Thus exposes harmful nessesive genes which would have stay hidden among heterzygotes
- 12. Continued inbreeding reduces genetic fitness of the population
- 13. As a result growth & fertility of the inbred population go down
- 14. With adversed effect on their productivity
- 15. Prevalance of genetic disorden might also increase among the inbred population
- 16. This phenomenon of having a reduced genetic fitness in a given population.
- 17. as a result of inbreeding is called 'Inbreeding depression'
- 18. Offsprings that are exhibiting the desired trait, without other negetive ones
- 19. The negatively affected individuals in the progeny are removed or are not ne allowed to be bred
- 20. inbreeding is used in agriculture to help accumulation of super genes.

C. Warning signs

Serving abdominal pain

- 2. Persistent vomitting
- 3. Rapid breathing
- 4. bleeding from the nose and gums
- 5. Fatigue
- 6. enlargement of liver
- 7. reduced number of platelets
- 8. restlessness and blood in vomit
- 9. Symptoms may progress to massive bleedivy
- 10. Very low blood pressure

 $37 \times 4 = 148$

Max. 150