සියල ම හිමිකම ඇවරිණි/ (மඟුට பුනිට්ටුෆිකාගියකාට All Rights Reserved | | | 82.0 | |-------------|---|------------------------| | ್ಲಾವ ೧೯ಌ೩೩ | දෙපාඨකමෙන්කුව ජධාරම | ್ಡ ಅಭಾತ್ರ | | ுகாணக்லவித் | යදපාඨකාශණනකුව සධාය
නිකාකාස්කතාර ගුණුණිධාර
RAL PROVINCEDEPARTN | on an approximation to | පළාත් අධාාපන දෙපාර්තමේන්තුව ்றாகாண் கல்விக் கிணைக்களம் தாணகல்விது திணைக்களம் முத்தியமாகாணகல்வது திணைக்களம் மத்தியமாகாணகல்வித் திணைக்களம் மத்தியமாகாணக අ.පො.ස (උ.පෙළ) පෙරහුරු පරීක්ෂණය 2022 රසායන විදාහාව II 02 13 ලේණිය පැය තුනයි අමතර කියවීම් කාලය - මිනින්තු 10 අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න: උපදෙස් කොටස සියළුම පුශ්නවලට පිළිතුරු සපයන්න. පුශ්න අංකය $R = 8.314 \, JK^{-1} \, mol^{-1}$ $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$ $h = 6.626 \times 10^{-34} \text{ Js}$ $C=3 \times 10^8 \text{ ms}^{-1}$ "A" කොටස (වාූහගත රවනා) සියලුම පුශ්න වලට මෙම පතෙය්ම පිළිතුරු සපයන්න ලැබූ ලකුණු - "B" සහ "C" කොටස (රවනා)එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න - පුශ්න පතුයෙහි "B" සහ "C "කොටස් පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත. | පරීක්ෂක මග් | පුයෝජනය | සදහා | පමණි. | |-------------|----------------|------|-------| | | | | | අවසාන ලකුණ | ඉලක්කමින් | | |-----------|----| | අකුරින් | | | | 10 | # papers grp ### A කොටස - වාහුහගත රචනා ## පුශ්ත සියල්ලටම පිළිතුරු සපයන්න - 1. (a) පහත දැක්වෙන පුශ්න වලට පිළිතුරු තිත් ඉර මත ලියන්න - BeCl₂, CaCl₂, AlCl₃ යන සංයෝග අතරින් වැඩිම ජල දුවානාවයක් ඇත්තේ කවරකටද? . - (ii) NH₄Cl, CH₃COONa⁺ CsCl යන සංයෝග අතරින් වඩාන්ම ආම්ලික වනුයේ කවරක්ද? - (iii) CO2 ,COCl2, HCHO, HCOOH යන සංයෝග අතරින් වඩාත්ම විදායුත් සෘණ කාඛන් පරමාණුව ඇත්තේ කවරකටද?..... - (iv) KHCO3, CaCO3, Rb2 CO3 යන සංයෝග අතරින් වැඩිම තාප ස්ථායීථාවයක් දක්වනුයේ කවරකටද ? - (v) NOCl, NOCl₃, NO₂F යන සංයෝග අතරින් වැඩිම N- O බන්ධන දිගක් ඇත්තේ කවරකටද? - (vi) Al³+,N³-, Mg²+, P³- යන අයන අතරින් කුඩාම අයනික අරය ඇත්තේ කවරකටද? (ලකුණු 30) (b) (i) HSO3Cl අනුව සඳහා වඩාත්ම පිළිගත හැකි ලුවිස් වසුහය අදින්න.(මධාා පරමාණු 1 ඇත) (ii) CH Cl₂ CON₃ අණුව සඳහා වඩාත්ම පිළිගත හැකි ලුවිස් වසුහය අදිත්ත මෙහි සැකිලි වසුහය පහත දක්වා ඇත. - (iii) ඉහත අනුව සඳහා තවත් ලුවිස් ඉරි වාසුහ (සම්පුයුක්ත වාසුහ) 02 ක් අදින්න. - (iv) දෙනලද ලුවිස් වාහුහය සහ එහි ලේඛල් කරන ලද සැකිල්ල පදනම් කරගෙන දී ඇති වගුව සම්පූර්ණ කරන්න. | | O1 | N ² | C ³ | O^4 | . C ₂ | |---------------------|----|----------------|----------------|----------------|------------------| | VSEPR යුගල් ගණන | | | | | | | ඉලෙක්ටුෝන ජාසාමිතිය | | | | Bry Bawa and B | | | අනුක ජාහාමිතිය | 4 | | | | | | ඔක්සිකරණ අංකය | | | | | | | මුහුම්කරණය
- | | | | | | | (v) | ඉහත දක්වා ඇති ලුවිස් තිත් ඉරි වායුහය පදනම් කරගෙන පහත පරමා | 0 | ලදක | අත්ර ග | බන්ධන | සැදීමට | |-----|---|---|-----|--------|-------|--------| | | සහභාගී වන පරමාණුක / මුහුම කාක්ෂික ලියන්න. | | | | | | - (i) $O^1 N^2 =$ - (ii) $N^2 C^3$: - (iii) $C^3 O^7$.:- - (iv) $C^3 O^4$: - (v) $O^4 C^5$: - (vi) C6 H :- - (i) $O^1 N^2$ - (ii) C³ O⁷ - (iii) C⁵ C⁶ (vii) N^2 , C^3 , O^4 හා C^5 පරමාණු වල විදාහුත් සෘණතාව වැඩිවන පිළිවෙලට සකස් කරන්න. ## 22.A/L 23 papers gr@4.8) (C) පරමාණුක කාක්ෂිකයක් විස්තර කරනුයේ n,l,m යන ක්වොන්ටම අංක 03 මහිනි. අදාල තොරතුරු යොදාගනිමින් වගුව සම්පූර්ණ කරන්න. | | n | 1 | m _l | පරමාණුක
කාක්ෂිකය | |-----|---|---|----------------|---------------------| | i | | | +1 | 3p | | ii | 4 | 0 | ••••• | | | iii | | 2 | -2 | 3d | ## (D) Ar, CH₃NH₂, CCl₄, HCHO ඉහත දක්වා ඇති දුවා අතරින් කුමන එක / ඒවාට පහත දක්වා ඇති බන්ධන තිබේද? - (i) ස්ථීර ද්විධුැව ස්ථීර ද්වීධුැව :- - (ii) හයිඩුජන් බන්ධන - (iii) ලන්ඩන් අපකිරණ බල :- (ලකුණු 3.0) - 2. (a) Aහා B නම් මූලදුවා දාවර්තිතා වගුවේ P ගොනුවට අයත් වේ. A, ස්වභාවයේ A_2 නම් ද්වී පරමාණුක වායුවක් වශයෙන් පවතින අතර පුළුල් පරාසයක ඔක්සිකරණ අවස්ථා පෙන්නුම් කරයි. A හි වඩාත් සුලභ හයිඩුයිඩය X වන අතර , X ඔක්සිකාරකයක්, ඔක්සිහාරකයක් මෙන්ම අම්ලයක් ලෙසද කියා කරයි. - B, $Cl_{2(g)}$ වායු ධාරාවක රත්කොට ලැබෙන එලයේ ජලීය දුාවණයකට සණ $KHCO_3$ කුඩු ස්වල්පයක් යෙදීමෙන් අවර්ණ වායුවක් පිටවන අතර එය හුණු දියර කිරි පැහැ ගන්වයි. තවද A හා B පුතිකියාවෙන් සැදෙන එලයට ජලය යෙදීමෙන් A හි හයිඩුයිඩය වන X හා සුදු පැහැති ජෙලටීනීය අවක්ෂේපයක්ද සාදයි. - (i). A හා B හි මූලදුවා හඳුනාගන්න. | (ii). A හා B හි භූමි අවස්ථාවේ ඉලෙක්ටුෝනික චිනාහසය ලියන්න. | | |--|--| | (iii). B හි සංයෝජන අවස්ථාවේ ඔක්සිකරණ අංකය ලියන්න. | | | | | | (iv). B මූලදුවා තනුක HCl හා තනුක NaOH සමහ පුතිකිුයා කරයි. ඒ සඳහා තුලිත රසාය:
ලියන්න.
i. තනුක HCl සමහ | නික සමීකරණය | | ii. තනුක NaOH සමහ | | | (v) පහත සඳහන් එක් එක් අවස්ථාවේ දී X හි කියාකාරිත්වය පෙන්නුම් කිරීම සඳහා තුලිස
ලියන්න. | ග සමීකරණය බැගින් | | I. X ඔක්සිකාරකයක් ලෙස II. X ඔක්සිකාරකයක් ලෙස | grp | | (vi). A මූලදුවා‍ය ඔක්සි අම්ල 02ක් සාදයි. ඉන් එක් අම්ලයක් සංශුද්ධ අවස්ථාවේ අවර්ණ දුම්
ආලෝකයට නිරාවරණය කළ විට කහ පැහැයක් ගනී. | වාහයක් වුවත් එය | | I A සාදන ඔක්සි අම්ල 2 හි රසායනික සූතු ලියන්න. | | | II ඉහත නිරීක්ෂණයට අදාල තුලිත රසායනික සමීකරණය ලියන්න. | ••••• | | (b) A සිට F දක්වා ලේබල් කරන ලද පරීක්ෂණ නල තුල K ₂ S ₂ O ₃ , BaCl ₂ , NaBr , Zn(NO ₃) | _{2,} NaIO ₃ ,K ₂ S යන | (b) A සිට F දක්වා ලේඛල් කරන ලද පරීක්ෂණ නල තුල K₂S₂O₃, BaCl₂, NaBr , Zn(NO₃)₂, NaIO₃,K₂S යන සංයෝග අඩංගු වේ. (පිළිවෙලින් නොවේ) මෙම සංයෝග හඳුනා ගැනීම සඳහා කල පරීක්ෂණවලදී ලද නිරීක්ෂණ පහත දී ඇත. | පරීක්ෂණ නලය | නිරීක්ෂණය | |-------------|---| | A | i. තනුක HCl සමහ පුතිකියා කළ විට අවර්ණ දාවණයක් හා X නම් වායුවක්
පිටවීය ii. එම වායුව ආම්ලික KMnO4 සමහ අපැහැදිලි දාවණයක් ලබා දුණි | | В | i. ජලයේ දුවායයි ii. ආම්ලික KI සමහ වර්ණවත් දාවණයක් ලබාදෙන අතර එම දාවණයට ජලීය NaOH යෙදුවිට වර්ණ තීවුතාව අඩුවේ. | | C | i. ජලයේ දුවා‍යයි ii. සාන්දු HCl හි ඝනය දාවණය කර දාවණය පහන්සිඑ පරීක්ෂාවේදී කොළ
පැහැති දැල්ලක් ලබාදුනි. | | D | i. ජලීය AgNO3 එක්කළ විට ලා කහ අවක්ෂේපයක් ලැබේ.
ii. එම අවක්ෂේපය සාන්දු NH3 වල දියවේ. | | Е | Pb(NO ₃) ₂ ජලීය දුාවණයක් යෙදූ විට සුදු පැහැති අවක්ෂේපයක් ලැබී රත්කළ
විට කළුපැහැ වේ. | | F | ජලීය NH4Cl හා ජලීය NH3 එක්කර ලැබෙන දුාවණය තුලින් .H2S
බුබුලනයේදී සුදු පැහැති අවකෂේපයක් ලැබේ. | | (i) A සිට F දක්වා පරීක්ෂණ නල තුල අඩංගු සංයෝග | හඳුනාගන්න |) | |--|-----------|---| |--|-----------|---| Α D B E C r | 298 K & PbI _{2 (s} | • . | | | | ***** | |---|--|--|---------------------------------------|--|-----------| | (Pb = 207, I = 1) | | බර PbI₂ හි ස∘තෘප්ත | දුාවණ 500 cm³ ක් පි | ළියෙල කරගන්නා ලදී | τ- | | i) දාවණාලය් ඇ | ති PbI2 මවුල සංඛාය | ාව ගණනය කරන්න. | ••••• | | (ii) 298 K ই কুং | ගත පද්ධතිමේ PbI _{2 (s} | _{ග)} හි මවුලික දාවාහොදි | ටය ගණනය කරන්න. | * | | | | | | ••••• | | | | (iii) 208 K % as | non mail officed Phila | . ආවාදනාවය ඇම්බන් | ්ධ සමතුලිතය ලියා දෘ | ත්වන්න | | | (III) 298 K Ç g | 355 OCW510W 1 012 (3 | ;) G102233000 001323 | w we age and eas qu | 300,00 | | | ······································ | | | | 202 | | | (IV) ඉහත ලයන
 | , ලද සමතුලතයෙ ස | ාතුලතතා නයනය සද | දහා පුකාශනය ලියා දෘ | ລບ ອາ ອາ. | | | (v) 298 K දී ඉහ | ාත ලියන ලද සමතුලි: | තතා නියතයේ අගය | ගණනය කරන්න | | | | | | | | | | | | | 2 F | | | | | | / 1 | the same of sa | | | | | 2 A, | L ac | bla | pers | gip] | | | 2 Ay | | | DEIS | <u> </u> | | | 2 Ay | | | | J | | | 2 Ay | | | | | | | 2 A | | | | | | | vi) 298 K දී Pb
මෙම පද්ධස් | I _{2 (s)} වැඩිපුර පුමාණය
ශියේ විකාශිත සමතුලි | sක් සංශුද්ධ ජලය 5 d
තතා නියතයේ අගය | lm³ ක දියකර සංතෘප්‍
පුරෝකථනය කරන්ෂ | ත දාවණයක් පිළියෙල
හ. ඔබේ පිළිතුරට හේත | ; කර
ව | | vi) 298 K දී Pb
මෙම පද්ධස්
දක්වන්න. | I _{2 (s)} වැඩිපුර පුමාණය
මයේ විකාශිත සමතුලි | sක් සංශුද්ධ ජලය 5 ල්
තතා නියතයේ අගය | lm³ ක දියකර සංතෘප්
පුරෝකථනය කරන්ද | ත දාවණයක් පිළියෙල
හ. ඔබේ පිළිතුරට හේත | , කර
ව | | vi) 298 K දී Pb
මෙම පද්ධත්
දක්වත්ත. | I _{2 (s)} වැඩිපුර පුමාණය
මයේ විකාශිත සමතුලි | აක් සංශුද්ධ ජලය 5 ල්
තතා නියතයේ අගය | lm³ ක දියකර සංතෘජ්
පුරෝකථනය කරන්ද | ත දාවණයක් පිළියෙල
හ. ඔබේ පිළිතුරට හේත | ; කර
ව | | (vii) | 298 K දී සාන්දණය 1.0 moldm-3 වූ NaI දාවණයක PbI2 වැඩිපුර පුමාණයක් දියකර සංතෘප්ත | |------------|---| | | දාවණයක් පිළියෙල කර ගන්නා ලදී. මෙහිදී PbI _{2 (s)} මවුලික දාවානාවය සංශුද්ධ ජලයේදී මවුලික | | | | | | දාවානාවයට වඩා අඩු වේද? වැඩිවේද? වෙනස් නොවේද? යන්න සඳහන් කර ඔබේ පිළිතුරට හේතු | | | දක්වන්න. | | | | | | | | | ••••••••••••••••••••••••••••••••••••••• | | | | | | | | | *************************************** | | | | | | | | * | (ලකුණු 10) | | උපක
[ජල | ක් විය. දාවණයේ ඝනත්වය හා විශිෂ්ඨ තාප ධාරිතාව ජලයේ ඝනත්වය හා වි. තා ධා. සමාන බව
ල්පනය කර පහත අසා ඇති පුශ්න වලට පිළිතුරු සපයන්න.
සේ ඝනත්වය 1000kgm ⁻³ ජලයේ වි. තා ධා. 4200Jkg ⁻¹ K ⁻¹ (K=39, 0=16, H=1).
H දාවණය තැවත 27 ⁰ C උෂ්ණත්වයට පත් වීමට පිටකළ යුතු තාප පුමාණය Q ₁ ගණනය කරත්න. | | | | | (ii) KO | H (s) + H2O (l) | | (-) | (s) 222 (i) | | | | | | ••••••••••••••••••••••••• | | #6 | | | | *************************************** | | | | | | | | | | | | | | | | | (iii)ඉහප | o (ii) හි ගණනය කරන ලද එන්තැල්පි විපර්යාසය හඳුන්වන නම සදහන් කරන්න. | | | | | | | | £ . | | CP/AL/2022/02/S-11 | ******* | | • | | | ••••• | TETE AND DESIGNATION OF | |--|---|---|---|---|---|-------------------------| | , | | | | | | •••••• | | | | | | | ••••• | | | | ************************* | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | | | | | | *************************************** | | | | | •••••• | | ••••••••••••••••••••••••••••••••••••••• | •••••• | 799 | | | • | | | | | | |) KOH _(S) 14
දාවණයේ උ | g ක් ඉහත තත්ව
උෂ්ණත්වය ඉහළ | යටතේදීම ආසුැ
නැගීම ඉහත ඇ | ත ජලය 250cm³
වස්ථාවට වඩා අඩ | ක, තාප පරිචාර:
ඉවද? වැඩිවෙද? | ක බඳුනක් තුල දිය
' වෙනස් නොවේද | කිරීමේ? | | සඳහන් කර | ් ඔබේ පිළිතුරට (| හේතු දක්වන්න . | 42 | 90¢. 0(woo¢. | වෙන්ස මනාවේද | (((2) 2) | | | •••••• | | | ••••• | | 9. | | | | | | | | | | | | •••••• | | | ••••••••• | | | | | • | | | | | | | | | | | ***************** | III IIIIIIII | | 99 | Λ / Γ | 2025 | I no | | C OI | | | i)ඉහත (v) අව
වායුත්පන්න අ | ස්ථාවේදී පිටවන
තරන්න | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q ₁ ඇ | සුරෙන් Q2 සඳහා දු | ූ කාශනය | | i)ඉහත (v) අව
වාසුත්පන්න අ | ස්ථාවේදී පිටවන
තරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ාප පුමාණය Q1 ඇ | සුරෙන් Q2 සඳහා දු | ූ කාශන ය | | i)ඉහත (v) අව
වායුත්පන්න ස | ස්ථාවේදී පිටවන
තරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q ₁ ඇ | සුරෙන් Q2 සඳහා දු | නාශන ය | | i)ඉහත (v) අව
වායුත්පන්න ස | ස්ථාවේදී පිටවන
කරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q1 ඇ | සුරෙන් Q සඳහා දු | දකාශන ය | | ්)ඉහත (v) අව
වාසුත්පන්න අ | ස්ථාවේදී පිටවන
කරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q ₁ ඇ | සුරෙන් Q2 සඳහා දු | ූකාශන ග | | i)ඉහත (v) අව
වායුත්පන්න ස | ස්ථාවේදී පිටවන
තරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q ₁ ඇ | සුරෙන් Q සඳහා ද | ූකාශන ය | | i)ඉහත (v) අව
වසුත්පන්න ස | ස්ථාවේදී පිටවන
තරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q ₁ ඇ | සුරෙන් Q සඳහා දු | ූකාශන ග | | ්)ඉහත (v) අව
වායුත්පන්න ස | ස්ථාවේදී පිටවන
කරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q ₁ ඇ | සුරෙන් Q2 සඳහා දු | ූකාශන ග | | ්)ඉහත (v) අව
වායුත්පන්න ස | ස්ථාවේදී පිටවන
තරන්න. | තාප පුමාණය Q | ු නම (i) පිටවන ත | ප පුමාණය Q ₁ ඇ | සුරෙන් Q සඳහා දු | දකාශන ය | | | | | | | | | | | E, F, G යනු | අණුක සුතුය C | SH10O අනුකු සා | බැය සැතික සැමා <u>ණ</u> | වැනුවන 07 නි ක් | | | A, B, C, D, | E, F, G යනු
වී පුතිකාරකය ස | අණුක සූතුය C
මහ කහ ගො ් ත | ්sH10O අනුක සූද
ැඹීලි පැහැති අවක | ඉය සහිත සමාදි | වයවික 07 කි. මේ | ම සංග | | A, B, C, D,
සියල්ලම බේදි
මොවයවිකතා | E, F, G යනු
වී පුතිකාරකය ස
ව දක්වයි. A, B | අණුක සූතුය C
මහ කහ හෝ ත | ්sHෑ@O අනුක සූූූ
ැඹීලි පැහැති අවක
ටොලන් පතිකාරු | ඉය සහිත සමාව
ීමේප සාදයි. මේ
කය සමඟ රිදී ත | වයවික 07 කි. මේ
විවා අතරින් F පම | ම සංග
ණක් පුර | | A, B, C, D,
සියල්ලම බේදි
මොවයවිකතා
නීත් A, මෙත | E, F, G යනු
වී පුතිකාරකය ස
ව දක්වයි. A, B | අණුක සූතුය C
මහ කහ හෝ ත | ්sHෑ@O අනුක සූූූ
ැඹීලි පැහැති අවක
ටොලන් පතිකාරු | ඉය සහිත සමාව
ීමේප සාදයි. මේ
කය සමඟ රිදී ත | වයවික 07 කි. මේ | ම සංග
ණක් පුර | | A, B, C, D,
සියල්ලම බේදි
මොවයවිකතා
නිත් A, මෙත
බොදේ. | E, F, G යනු
වී පුතිකාරකය ස
ව දක්වයි. A, E
නෝල් මාධාාගේ | අණුක සූතුය C
මහ කහ හෝ ත | ්sHෑ@O අනුක සූූූ
ැඹීලි පැහැති අවක
ටොලන් පතිකාරු | ඉය සහිත සමාව
ීමේප සාදයි. මේ
කය සමඟ රිදී ත | වයවික 07 කි. මේ
විවා අතරින් F පම | ම සංග
ණක් පුර | | A, B, C, D,
සියල්ලම බේදි
මොවයවිකතා
නිත් A, මෙත
බොදේ. | E, F, G යනු
වී පුතිකාරකය ස
ව දක්වයි. A, E
නෝල් මාධාාගේ | අණුක සූතුය C
මහ කහ හෝ ත | ්sHෑ@O අනුක සූූූ
ැඹීලි පැහැති අවක
ටොලන් පතිකාරු | ඉය සහිත සමාව
ීමේප සාදයි. මේ
කය සමඟ රිදී ත | වයවික 07 කි. මේ
විවා අතරින් F පම | ම සංග
ණක් පුර | | A, B, C, D,
සියල්ලම බේදි
මොවයවිකතා | E, F, G යනු
වී පුතිකාරකය ස
ව දක්වයි. A, E
නෝල් මාධාාගේ | අණුක සූතුය C
මහ කහ හෝ ත | ්sHෑ@O අනුක සූූූ
ැඹීලි පැහැති අවක
ටොලන් පතිකාරු | ඉය සහිත සමාව
ීමේප සාදයි. මේ
කය සමඟ රිදී ත | වයවික 07 කි. මේ
විවා අතරින් F පම | ම සංග
ණක් පුර | | A, B, C, D,
සියල්ලම බේදි
මොවයවිකතා
නි A, මෙත
බොදේ.
) Aහා F වාසු | E, F, G යනු
වී පුතිකාරකය ස
ව දක්වයි. A, E
නෝල් මාධාාගේ | අණුක සූතුය C
මහ කහ හෝ ත | ්sHෑ@O අනුක සූූූ
ැඹීලි පැහැති අවක
ටොලන් පතිකාරු | ඉය සහිත සමාව
ීමේප සාදයි. මේ
කය සමඟ රිදී ත | වයවික 07 කි. මේ
විවා අතරින් F පම | ම සංග
ණක් පුර | | A, B, C, D,
සියල්ලම බේදි
මොවයවිකතා
නි A, මෙත
බොදේ.
) Aහා F වාසු | E, F, G යනු
වී පුතිකාරකය ස
ව දක්වයි. A, E
නෝල් මාධාාගේ | අණුක සූතුය C
මහ කහ හෝ ත | ්sHෑ@O අනුක සූූූ
ැඹීලි පැහැති අවක
ටොලන් පතිකාරු | ඉය සහිත සමාව
ීමේප සාදයි. මේ
කය සමඟ රිදී ත | වයවික 07 කි. මේ
විවා අතරින් F පම | ම සංග
ණක් පුර | (ii) මෙහි G, LiAlH₄ සමහ පිරියම් කර ජල විවේඡ්දනයෙන් ලැබෙන එලය වන G₁ සාන්දු H₂SO₄ සමහ රත්කළ විට ඇල්කීනයක් ලබා නොදේ. G හා G₁ හි වාහු අදින්න. G (iii) B හා C මෙතතෝල් මාධායේ NaBH4 සමහ පිරියම් කර ජල වීච්ඡේදනයෙන් ලැබෙන එල සාන්දු H₂SO₄ සමහ රත්කළ විට C, ලබාදෙන එලය පමණක් ජායාමිතික සමාවයවිකතාව දක්වයි. B හා C වසුහ අදින්න. B (iv) B, E, F සංයෝග තුනම Zn(Hg) සාන්දු HCl සමහ එකම I එලය ලබාදේ. E,D හා I වල වසුහ අදින්න. (b) පහත දැක්වෙන පුතිකියා වලින් ලැබෙන පුධාන එල වල වසුහ අදින්න. I. NaNO₂ / තනුක HCl (0-5) °c II. CH₃CH₂MgBr VI. C₆H₅NH₂ 22 A/L æ8 [papers grp] C. ඇල්කීන හා HBr අතර යාන්තුණය සලකමින් ඉහත පුතිකියාව (iii) හි යාන්තුණය ලියන්න.