

"නැණ සයුර" අධානපනික වැඩසටහන-2023 සරසවි පිවිසුම් අත්වැල උතුරු මැද පළාත් අධාාපන දෙපාර්තමේන්තුව

සංයුක්ත ගණිතය - l පතුය

13	ලේණිය
----	-------

කාලය - පැය 03 මිනිත්තු 10

නම :	
ω .	

උපදෙස් :

- මෙම ප්‍‍රශ්න පත්‍රය කොටස් දෙකකින් සමන්විත වේ;
- $m{A}$ කොටස (පුශ්න 1-10) සහ $m{B}$ කොටස (පුශ්න 11-17)
- A කොටස :

සියලු ම පුශ්න වලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු , සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

B කොටස:පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතයි l		
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
Α	5	
A	6	
	7	
	8	
	9	
	10	10
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

API (PAPERS GROUP

II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	
၎ဆ္မမာ	

1)	ගණිත අභාූහන මූලධර්මය භාවිතයෙන් , සියලු $n\in\mathbb{Z}^+$ සඳහා $3.5^{2n+1}+2^{3n+1}$ යන්න 17 න් බෙදෙන බව පෙන්වන්න.
	•••••••••••••••••••••••••••••••••••••••
~ ~	
23	AL API (PAPERS GROUP

2)	එකම රූප සටහනක $y=\left 3- x \right $ හා $y=\left 2x-3\right $ හි පුස්තාරවල දළ සටහන් අදින්න. ඒ නයින් හෝ
2)	එකම රූප සටහනක $y=\left 3- x \right $ හා $y=\left 2x-3\right $ හි පුස්තාරවල දළ සටහන් අඳින්න. ඒ නයින් හෝ අන් අයුරකින් හෝ , $\left 2x-3\right \leq\left 3- x \right $ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	එකම රූප සටහනක $y=\left 3- x \right $ හා $y=\left 2x-3\right $ හි පුස්තාරවල දළ සටහන් අදින්න. ඒ නයින් හෝ අන් අයුරකින් හෝ , $\left 2x-3\right \leq\left 3- x \right $ අසමානතාව සපුරාලන x හි සියලුම තාත්වික අගයන් සොයන්න.
2)	
2)	•••••••••••••••••••••••••••••••••••••••
2)	
2)	
2)	
2)	
2)	
2)	
2)	
2)	
2)	
2)	

3)	ආගන්ඩ් සටහනක $ ar z+4i \leq 2$ අසමානතාව සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවලින් සමන්විත පෙදෙස අඳුරු කරන්න. මෙම අඳුරු කල පෙදෙසෙහි ලක්ෂා මගින් නිරූපනය කරනු ලබන z සංකීර්ණ සංඛාාව සඳහා $\operatorname{Arg}(z)$ හි වැඩිතම අගය සොයන්න.
23	3' AL API (PAPERS GROUP
•	(1
4)	$(1+x)^n$ හි පුසාරණයේ අනුගාමී පද තුනක සංගුණක $1{:}7{:}42$ අනුපාතයට පිහිටා ඇත. n සහ r සොයන්න.
4)	
4)	
4)	
4)	
4)	

5)	$\lim_{x\to 0} \frac{x \sin(x^2)}{\sin x (1 - \sqrt{\cos x})} = 4$ බව පෙන්වන්න.
2	3'ALAPI (PAPERS GROUP
6)	$y=rac{x^{rac{3}{2}}}{(1+x^2)^2}$, x අක්ෂයෙන් ද $x=0$ හා $x=1$ මගින් ආවෘත වර්ගඵලය x අක්ෂය වටා රේඩියන් 2π වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව සොයන්න.

7)	$t \neq 0$ සඳහා $x^3 - y^2 = 0$ මගින් දෙනු ලබන C වකුයට $P \equiv (4t^2,8t^3)$ ලක්ෂායේදී ඇදි ස්පර්ශකයේ සමීකරණය $3tx - y - 4t^3 = 0$ බව පෙන්වන්න. P හි දී වකුයට අදින අභිලම්බය නැවත වකුය හමුවන ලක්ෂායෙහි ඛණ්ඩාංක $Q \equiv (4T^2,8T^3)$ නම් $T = -\frac{1}{9t}$ බව පෙන්වන්න.
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
23	'ALAPI (PAPERS GROUP
	•••••••••••••••••••••••••••••••••••••••
8)	$(2,3)$ ලක්ෂාය හරහා යන අනුකුමණය $\frac{3}{4}$ වූ l සරල රේඛාවේ සමීකරණය සොයන්න. මෙම l හි සිට ඒකක 3 ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	
8)	ක දුරින් පිහිටන , $oldsymbol{l}$ ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමිකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , l ට සමාන්තර වූ සරල
8)	ක දුරින් පිහිටන , ් ට සමාන්තර වූ සරල ඓඛාවේ සමීකරණය සොයන්න.
8)	ක දුරින් පිහිටන , ් ට සමාන්තර වූ සරල රේඛාවේ සමීකරණය සොයන්න.

9)	$P\equiv (2,3)$ යනු $S=0$ වෘත්තයට පිටතින් පිහිටන ලක්ෂායකි. $A\equiv (a,5)$ හා $B\equiv (5,b)$ යනු $S=0$ වෘත්තය මත පිහිටියා වූද පිළිවෙලින් P ට ආසන්නම හා දුරින්ම පිහිටි , $PA:AB=2:3$ වන පරිදි වූ ලක්ෂා දෙකකි. $a=4$ හා $b=6$ වන බව පෙන්වන්න.තවද $S=0$ වෘත්තයෙහි සමීකරණය සොයන්න.
2	3'ALAPI (PAPERS GROU
10)	$0< heta<rac{\pi}{2}$ සඳහා $tan\left(rac{ heta}{2} ight)=rac{\sqrt{1+tan^2 heta}-1}{tan heta}$ බව පෙන්වන්න. $tan\left(rac{\pi}{12} ight)=2-\sqrt{3}$ බව අපෝහනය කරන්න.
10)	$0< heta<rac{\pi}{2}$ සඳහා $tan\left(rac{ heta}{2} ight)=rac{\sqrt{1+tan^2 heta}-1}{tan heta}$ බව පෙන්වන්න. $tan\left(rac{\pi}{12} ight)=2-\sqrt{3}$ බව අපෝහනය කරන්න.
10)	
10)	
10)	
10)	
10)	
10)	
10)	
10)	
10)	
10)	

B කොටස

11.

a) $b,c \neq 0$ සදහා $f(x) = x^2 - bx + c$ යැයි ගනිමු. f(x) = 0 සමීකරණයෙහි 0 මූලයක් නොවන බව පෙන්වන්න.

f(x)=0 සමීකරණයේ මූල lpha හා eta හා $b^2>4c$ නම්, lpha හා eta තාත්වික හා පුභින්න වන බව පෙන්වන්න.

b,c ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වා , $|lpha|+|eta|=\sqrt{b^2-2c+2|c|}$ බව පෙන්වන්න.

තවද $1+\frac{1}{|\alpha|}$ හා $1+\frac{1}{|\beta|}$ මූල වන වර්ගජ සමීකරණය

$$|c|x^2-\left(\sqrt{b^2-2c+2|c|}+2|c|\right)x+\left(\sqrt{b^2-2c+2|c|}+|c|+1\right)=0$$
 බව පෙන්වන්න.

lpha හා eta යන දෙකම ධන හෝ ඍණ නම්, $1+rac{1}{|lpha|}$ හා $1+rac{1}{|eta|}$ මූල වන වර්ගජ සමීකරණය

 $cx^2 - (|b| + 2c)x + (|b| + c + 1) = 0$ බව අපෝහනය කරන්න.

b) $h(x)=2x^3+ax^2+bx+c$ යැයි ගනිමු. මෙහි $a,b,c\in\mathbb{R}$ වේ. h(x), (x^2-1) මගින් බෙදූ විට ශේෂය 6x-3 නම්, b=4 බව පෙන්වන්න.

 $h(x),\ x^2-3x$ මගින් බෙදූ විට ශේෂය kx+4 වේ. මෙහි $k\in\mathbb{R}$ වේ. k,a හා c හි අගයන් සොයන්න.

(x-2),h(x) හි සාධකයක් බව පෙන්වන්න.

තව ද a,b,c මෙම අගයන් ගන්නා විට $h(x)=(x-p)^2(2x-q)$ ලෙස ලිවිය හැකි බව පෙන්වන්න. p හා q යනු නිර්ණය කල යුතු නියත වේ. $p,q\in\mathbb{R}$ වේ.

12.

a) වගුවේ පෙන්වා ඇත්තේ ජාතාන්තර සම්මේලනයක් සඳහා සුදුසුකම් ලැබූ ඉංජිනේරු, වෛදා සහ ගණකාධිකාරී යන වෘත්තිකයන් විසිදෙනෙකුගේ තොරතුරු වේ.

	ගැහැණු	පිරිමි
මෛ දා	4	2
ඉංජිනේරු	4	4
ගණකාධිකාරී	4	2

ඉහත වෘත්තිකයන් අතුරින් සම්මේලනය සඳහා දස දෙනෙකුගෙන් යුත් කණ්ඩායමක් තෝරා ගත යුතුව ඇත.

- l. හරියටම ගැහැණු 5 ක් සහ පිරිමි 5ක් ඇතුලත් වන කණ්ඩායම් ගණන
- II. අඩුම වශයෙන් ගැහැණු 3 ක් සහ පිරිමි 5 ක් ඇතුලත් වන කණ්ඩායම් ගණන
- III. එක් එක් වෘත්තිකයන්ගෙන් අඩුම වශයෙන් පිරිමි දෙදෙනෙක් සහ ගැහැණු එක් අයෙකු ඇතුලත් වන සේ සහ හරියටම පිරිමි හයදෙනෙකු සහ ගැහැණු හතරදෙනෙකුගෙන් සමන්විත කණ්ඩායම් ගණන සොයන්න.

23' AL API (PAPERS GROUP)

b) $r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{1}{r(r+1)(r+2)}$ වේ.

 $U_r=f_r-f_{r+|1}$ වන පරිදි λ සොයන්න. මෙහි $f_r=rac{\lambda}{r(r+1)}$; හා $\lambda\in\mathbb{R}$ වේ.

එනයින් $\sum_{r=1}^n U_r = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$ බව පෙන්වන්න.

 $r \in \mathbb{Z}^+$ සඳහා $V_r = \frac{1}{(r+1)(r+2)(r+3)}$ නම්, $\sum_{r=1}^n V_r = \frac{1}{12} - \frac{1}{2(n+2)(n+3)}$ බව අපෝහනය කරන්න.

 U_r+V_r සොයා එනයින් $\sum_{r=1}^n W_r=rac{1}{3}-rac{1}{2(n+1)(n+2)}-rac{1}{2(n+2)(n+3)}$ බව අපෝහනය කරන්න. මෙහි

 $\sum_{r=1}^{\infty} W_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව අපෝහනය කර එහි චෛකා සොයන්න.

23' AL API (PAPERS GROUP) a) $A = \begin{pmatrix} a & 0 \\ 2 & -2 \\ h & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 5 \\ 4 & -1 \\ 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 15 & 6 \\ c & 5 \end{pmatrix}$ and so $a, b, c \in \mathbb{R}$ of $a, b, c \in \mathbb{R}$ of

 $A^TB=C$ නම්, a=1 හා b=3 හා c=-2 බව පෙන්වන්න.

 \mathcal{C}^{-1} පවතින බව පෙන්වා එය ලියා දක්වන්න.

C(P+2I)=3C+I වන පරිදි Pසොයන්න.

- b) $z \in \mathbb{C}$ ලෙස ගනිමු.
 - $z\bar{z} = |z|^2$ බව පෙන්වන්න

ඒ නයින් $|z-2i|^2=|z|^2-4 \operatorname{Im}(z)+4$ බව හා $|1 + 2iz|^2 = 1 - 4 \operatorname{Im}(z) + 4|z|^2$ බව පෙන්වන්න.

II. $Z \neq 2i$ සඳහා $\left| \frac{1+2iz}{z-2i} \right| = 1$ ම නම් පමණක් |z| = 1 බව අපෝහනය කරන්න.

 $\left| \frac{1+2iz}{z-2i} \right| = 1$ හා $Arg(2iz) = \frac{\pi}{6}$ නම්, z සංකීර්ණ සංඛපාව සොයන්න.

c) $z=\sqrt{6}+\sqrt{2}i$ නම් z යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න. මෙහි r>0 හා $0 < heta < rac{\pi}{2}$ වේ. ද මුවාවර් පුමේයය භාවිතයෙන් $\left(\sqrt{6} + \sqrt{2}i
ight)^6 = -512$ බව පෙන්වන්න.

14.

a) $x \neq 1$ සඳහා $f(x) = \frac{2x-1}{(x-1)^2}$ යැයි ගනිමු. .

f(x) හි පළමු වසුත්පත්නය වූ f'(x) යන්න $f'(x) = \frac{Ax}{(x-1)^3}$ මඟින් දෙනු ලබන බව පෙන්වන්න. මෙහි A යනු නිර්ණය කල යුතු නියතයකි.

ඒ නයින්, f(x) වැඩිවන පුාන්තරය හා f(x)අඩුවන පුාන්තරය සොයන්න.

තව ද f(x) හි දෙවන වසුත්පන්නය වූ f''(x) යන්න $f''(x) = \frac{2(2x+1)}{(x-1)^4}$ බව දී ඇත.ස්පර්ශෝන්මුඛ ,x අන්තඃඛණ්ඩය ,හැරුම් ලක්ෂා හා නතිවර්තන ලක්ෂා දක්වමින් y = f(x) පුස්තාරයේ දළ සටහනක් අදින්න.

 $\frac{x}{2}$ m

b) යාබද රූපයේ අඳුරු කර ඇති කොටසින් දක්වා ඇත්තේ ABCD සෘජුකෝණාසු බිම් කොටසකින් සමාන වෘත්ත කොටස් හතරක් ඉවත් කිරීමෙන් සාදා ඇති තණකොළ සිටුවා ඇති පිට්ටනියකි. වෘත්ත කොටස් වල කේන්දු ABCD සෘජුකෝණාසුයේ ශීර්ෂ වල පිහිටා ඇති අතර අරය $\frac{x}{2}m$ වේ. සෘජුකෝණාසුයේ A පරිමිතිය 2pm වන අතර එහි දිග හා පළල පිළිවෙලින් ym හා xm වේ. පිට්ටනියේ වර්ගඵලය $A = \left(px - \left(\frac{\pi+4}{2}\right)x^2\right)m^2$ බව පෙන්වන්න.

පිට්ටනියේ වර්ගඵලය $A = \left(px - \left(\frac{\pi+4}{4}\right)x^2\right)\,m^2$ බව පෙන්වන්න. මෙහි 0 < x < p වේ.

වර්ගඵලය අවම වන $x=rac{2p}{\pi+4}$ බව පෙන්වා ,එවිට x: y=2: $(\pi+2)$ බව ද පෙන්වන්න.

23' AL API (PAPERS GROUP)

a) $\frac{x}{(x+1)(x^2+4)}$ යන්න හින්න භාග වලින් ලියා දක්වන්න

එනයින් $\int_0^1 \frac{x}{(x+1)(x^2+4)} dx$ සොයන්න.

b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන් $\int rac{x \, \sin^{-1} x}{\sqrt{1-x^2}} \, dx$ අගයන්න.

c) $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ බව පෙන්වන්න.

එනයින් $\int_0^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} dx = \frac{\pi}{4} \int_0^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} dx$ බව පෙන්වන්න.

 $\int_0^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} \ dx = \frac{\pi}{2\sqrt{2}} \ln(\sqrt{2} + 1)$ බව අපෝහනය කරන්න.

16.

- a) l=3x-4y+15a=0 සරල රේඛාවේ සමීකරණය සලකමු.මෙහි $a\neq 0$ වේ. $A\equiv (a\,,2a)$ සහ $B\equiv (2a,4a)$ ලක්ෂs දෙක l රේඛාවෙන් එකම පැත්තේ පිහිටන බව පෙන්වන්න.
- b) $2g_1g_2 + 2f_1f_2 = c_1 + c_2$ නම්, $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ හා $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ වෘත්ත දෙක පුලම්බව ඡේදනය වන බව සාධනය කරන්න. lරේඛාව ස්පර්ශ කරන හා පිළිවෙලින් A හා B කේන්දු ලෙස ඇති S_1 හා S_2 වෘත්ත වල සමීකරණ a ඇසුරෙන් සොයන්න.

සියලු $a \neq 0$ සඳහා S_1 හා S_2 වෘත්ත පුලම්බව ඡේදනය වන බව පෙන්වන්න.

දැන් a=2 නම් S_1 හා S_2 වෘත්ත වල සමීකරණ ලියන්න.

A,B ලක්ෂා යා කරන රේඛාව සහ l රේඛාව ඡේදන ලක්ෂාය C ලෙස ගනිමු. C හි ඛණ්ඩාංක සොයන්න. C ලක්ෂායේ සිට වෘත්ත වලට ඇඳි අනෙක් ස්පර්ශකයේ සමීකරණය සොයන්න.

23' AL API (PAPERS GROUP

a) $-\frac{\pi}{2} < x < \frac{\pi}{2}$ සඳහා $f(x) = \frac{1+\cot x}{1+\cot^2 x}$ ලෙස ගනිමු. $f(x) = A\cos(2x+\alpha) + B$ ආකාරයෙන් පුකාශ කරන්න.

 $A,B,lpha(0<lpha<rac{\pi}{2})$ යනු නිර්ණය කළ යුතු නියත වේ.

ඒ නයින් $-\frac{\pi}{2} < x < \frac{\pi}{2}$ සඳහා y = 2f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

b) ඕනෑම තිුකෝණයක් සඳහා කෝසයින් නීතිය පුකාශ කර සාධනය කරන්න.

ABC තිකෝණයේ BC,CA,AB පාදවල දිග පිළිවෙලින් a , a+d , a+2d වේ. $Cos\ C=rac{1}{2}-rac{3d}{2a}$ බව සාධනය කරන්න.

ඒ නයින් $\frac{2\pi}{3} < C < \pi$ සඳහා $\frac{d}{a}$ ට තිබිය යුතු අගය පරාසය සොයන්න.

c) $(\sin^{-1}x)^3+(\cos^{-1}x)^3=\pi^3a$ ලෙස ගනිමු. මෙහි $-1\leq x\leq 1$ වේ. $\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2}$ යන පුතිඵලය භාවිතයෙන් $\left(\sin^{-1}x-\frac{\pi}{4}\right)^2=\frac{\pi^2}{48}(32a-1)$ බව පෙන්වන්න. ඒ නයින් $a\geq \frac{1}{32}$ බව අපෝහනය කරන්න.

23, AL API Papers Group

